Углеродный цикл и изменения климатаОсновные выводы. 9 Список литературы. Человек и климат. Влияние человека на климат начало проявляться несколько тысяч лет тому назад в связи с развитием земледелия. Во многих районах для обработки земли уничтожалась лесная растительность, что приводило к увеличению скорости ветра у земной поверхности, некоторому изменению режима температуры и влажности нижнего слоя воздуха, а также к изменению режима влажности почвы, испарения и речного стока. В сравнительно сухих областях уничтожение лесов часто сопровождается усилением пыльных бурь и разрушением почвенного покрова, заметно изменяющими природные условия на этих территориях. Вместе с этим уничтожение лесов даже на обширных пространствах оказывает ограниченное влияние на метеорологические процессы большого масштаба. Уменьшение шероховатости земной поверхности и некоторое изменение испарения на освобождённых от лесов территориях несколько изменяет режим осадков, хотя такое изменение сравнительно невелико, если леса заменяются другими видами растительности. Более существенное влияние на осадки может оказать полное уничтожение растительного покрова на некоторой территории, что неоднократно происходило в прошлом в результате хозяйственной деятельности человека. Такие случаи имели место после вырубки лесов в горных районах со слабо развитым почвенным покровом. В этих условиях эрозия быстро разрушает не защищённую лесом почву, в результате чего становится невозможным дальнейшее существование развитого растительного покрова. Похожее положение возникает в некоторых областях сухих степей, где естественный растительный покров, уничтоженный вследствие неограниченного выпаса сельскохозяйственных животных , не возобновляется, в связи с чем эти области превращаются в пустыни. Поскольку земная поверхность без растительного покрова сильно нагревается солнечной радиацией, относительная влажность воздуха на ней падает, что повышает уровень конденсации и может уменьшать количество выпадающих осадков. Вероятно, именно этим можно объяснить случаи невозобновления естественной растительности в сухих районах после её уничтожения человеком. Другой путь влияния деятельности человека на климат связан с применением искусственного орошения. В засушливых районах орошение используется в течение многих тысячелетий, начиная с эпохи древнейших цивилизаций, возникших в долине Нила и междуречье Тигра и Ефрата. Применение орошения резко изменяет микроклимат орошаемых полей. Из-за незначительного увеличения затраты тепла на испарение снижается температура земной поверхности, что приводит к понижению температуры и повышению относительной влажности нижнего слоя воздуха. Тем не менее такое изменение метеорологического режима быстро затухает за пределами орошаемых полей, поэтому орошение приводит только к изменениям местного климата и мало влияет на метеорологические процессы большого масштаба. Другие виды деятельности человека в прошлом не оказывали заметного влияния на метеорологический режим сколько-нибудь обширных пространств, поэтому до недавнего времени климатические условия на нашей планете определялись в основном естественными факторами. Такое положение начало изменяться в середине ХХ века из-за быстрого роста численности населения и особенно из-за ускорения развития техники и энергетики. Современные воздействия человека на климат можно разделить на две группы, из которой к первой относятся направленные воздействия на гидрометеорологический режим, а ко второй - воздействия, являющиеся побочными следствиями хозяйственной деятельности человека. Данная работа ставит своей целью рассмотреть в первую очередь вторую группу воздействиий, и, в частности, влияние человека на углеродный цикл. Введение. Деятельность человека достигла уже такого уровня развития, при котором её влияние на природу приобретает глобальный характер. Природные системы - атмосфера, суша, океан, - а также жизнь на планете в целом подвергаются этим воздействиям. Известно, что на протяжении последнего столетия увеличивалось содержание в атмосфере некоторых газовых составляющих, таких, как двуокись углерода ( Аррениус указал на то, что сжигание ископаемого топлива могло привести к увеличению концентрации атмосферного Механизм воздействия Вследствие этого эффекта увеличение концентрации атмосферного Продолжающийся рост концентрации Поступление углекислого газа в атмосферу в результате промышленных выбросов. Взаимосвязь между энергопотреблением, экономической деятельностью и поступлением углекислого газа в атмосферу. Основным антропогенным источником выбросов Исторически сложилось, что подъём экономики зависит от наличия доступных источников энергии и количества сжигаемого ископаемого топлива. Данные о развитии экономики и энергетики для большинства стран за период 1860-1973 гг. Свидетельствуют не только об экономическом росте, но и о росте энергопотребления. Тем не менее одно не является следствием другого. Начиная с 1973 года во многих странах отмечается снижение удельных энергозатрат при росте реальных цен на энергию. Недавнее исследование промышленного использования энергии в США показало, что начиная с 1920 года отношение затрат первичной энергии к экономическому эквиваленту производимых товаров постоянно уменьшалось. Более эффективное использование энергии достигается в результате совершенствования промышленной технологии, транспортных средств и проектирования зданий. Кроме того, в ряде промышленно развитых стран произошли сдвиги в структуре экономики, выразившиеся в переходе от развития сырьевой и перерабатывающей промышленности к расширению отраслей, производящих конечный продукт. Минимальный уровень потребления энергии на душу населения, необходимый в настоящее время для удовлетворения нужд медицины, образования и рекреации, значительно меняется от региона к региону и от страны к стране. Во многих развивающихся странах значительный рост потребления высококачественных видов топлива на душу населения является существенным фактором для достижения более высокого уровня жизни. Сейчас представляется вероятным, что продолжение экономического роста и достижение желаемого уровня жизни не связаны с уровнем энергопотребления на душу населения, однако этот процесс ещё недостаточно изучен. Можно предположить, что до достижения середины следующего столетия экономика большинства стран сумеет приспособиться к повышенным ценам на энергию, уменьшая потребности в рабочей силе и в других видах ресурсов, а также увеличивая скорость обработки и передачи информации или, возможно, изменяя структуру экономического баланса между производством товаров и предоставлением услуг. Таким образом, от выбора стратегии развития энергетики с той или иной долей использования угля или ядерного топлива в энергетической системе будет непосредственно зависеть скорость промышленных выбросов Энергия не производится ради самого производства энергии. В промышленно развитых странах основная часть вырабатываемой энергии приходится на промышленность, транспорт, обогрев и охлаждение зданий. Во многих недавно выполненных исследованиях показано, что современный уровень потребления энергии в промышленно развитых станах может быть существенно снижен за счёт применения энергосберегающих технологий. Так, было рассчитано, что если бы США перешли бы при производстве товаров широкого потребления и в сфере услуг на наименее энергоёмкие из уже имеющихся технологий при том же объёме производства, то количество поступающего в атмосферу Дальнейшего снижения скорости поступления Углерод в природе. Среди множества химических элементов, без которых невозможно существование жизни на Земле, углерод является главным. Химические превращения органических веществ связаны со способностью атома углерода образовывать длинные ковалентные цепи и кольца. Биогеохимический цикл углерода, естественно, очень сложный, так как он включает не только функционирование всех форм жизни на Земле, но и перенос неорганических веществ как между различными резервуарами углерода, так и внутри них. Основными резервуарами углерода являются атмосфера, континентальная биомасса, включая почвы, гидросфера с морской биотой и литосфера. В течение последних двух столетий в системе атмосфера - биосфера - гидросфера происходят изменения потоков углерода, интенсивность которых примерно на порядок величины превышает интенсивность геологических процессов переноса этого элемента. По этой причине следует ограничиться анализом взаимодействий в пределах этой системы, включая почвы. Основные химические соединения и реакции. Известно более миллиона углеродных соединений, тысячи из которых участвуют в биологических процессах. Атомы углерода могут находиться в одном из девяти возможных состояний окисления: от + IV до - IV . Наиболее распространённое явление - это полное окисление, т.е. + IV , примерами таких соединений могут служить Изотопы углерода. В природе известно семь изотопов углерода, из которых существенную роль играют три. Два из них - Необходимость изучения различных изотопов углерода обусловлена тем, что скорости переноса соединений углерода и условия равновесия в химических реакциях зависят от того, какие изотопы углерода содержат эти соединения. По этой причине в природе наблюдается различное распределение стабильных изотопов углерода. Распределение же изотопа Атмосферный углекислый газ. Тщательные измерения содержания атмосферного Регулярные измерения содержания атмосферного Третьим, и , вероятно, наименее важным фактором является годовой ход интенсивности фотосинтеза в океане. Среднее за каждый данный год содержание Концентрация Содержание изотопа Первые измерения содержания изотопа Значение Содержание изотопа Количество изотопа Начиная с первых испытаний ядерного оружия в 1952 и 1954 годах наблюдались существенные изменения содержания Большое поступление Первоначально большая часть радиоактивных продуктов переносилась в стратосферу. Поскольку время обмена между стратосферой и атмосферой составляет несколько лет, то уменьшение концентрации изотопа Перемешивание в атмосфере. Перемешивание воздуха в тропосфере происходит довольно быстро. Пассаты в средних широтах в обоих полушариях огибают Землю в среднем примерно за один месяц, вертикальное перемещение между земной поверхностью и тропопаузой (на высоте от 12 до 16 км) также происходит в течение месяца, перемешивание в направлении с севера на юг в пределах полушария происходит приблизительно за три месяца, а эффективный обмен между двумя полушариями осуществляется примерно за год. Поскольку в данной работе рассматриваются процессы, изменения которых происходят за время порядка нескольких лет, десятилетий и столетий, можно считать, что тропосфера в любой момент времени хорошо перемешана. Это предположение основано на том, что средние годовые значения концентрации Различие концентраций в северном и южном полушариях, вероятно, вызвано тем, что около 90% источников промышленных выбросов расположено в северном полушарии. За последние десятилетия эта разница увеличилась, поскольку потребление ископаемого топлива также возросло. Обмен между стратосферой и тропосферой происходит значительно медленнее, чем в тропосфере, поэтому сезонные колебания концентрации атмосферного углекислого газа выше тропопаузы быстро уменьшаются. В стратосфере рост концентрации Газообмен в системе атмосфера - океан. Скорость газообмена. В стационарном состоянии, существовавшем в доиндустриальное время, более 90% содержащегося на Земле изотопа Средний глобальный обмен Данные наблюдений за уменьшением концентрации Третий способ оценки скорости газообмена между атмосферой и океаном заключается в измерении отклонения от состояния равновесия между Средняя скорость газообмена Растворимость и буферный фактор увеличиваются при понижении температуры. Так как изменение парциального давления углекислого газа в направлении от полюса к экватору невелико, в среднем Буферный фактор имеет величину порядка 10 и увеличивается с ростом значений Углерод в морской воде. Полное содержание углерода и щёлочность. Как показали исследования, содержание суммарного неорганического углерода в океане в 1983 году более, чем в 50 раз превышало содержание Вертикальное распределение Наблюдается также увеличение концентрации Вертикальное распределение щёлочности очень похоже на распределение Деятельность морской биоты практически полностью ограничена поверхностными слоями океана, где происходит интенсивный фотосинтез в фотической зоне и бактериальное разложение, которое сосредоточено главным образом также в верхнем стометровом слое океана. По-видимому, только около 10% первичной продукции в виде мёртвой органики в основном в форме фекальных пеллет и остатков организмов достигает более глубоких слоёв океана, и, вероятно, около 1% этого вещества откладывается на океаническом дне. Полная первичная продуктивность океана составляет около Влияние этого процесса на щёлочность может быть различным. Каждый использованный при образовании органического вещества микромоль углерода увеличивает щёлочность примерно на 0,16 мкэкв, а когда углерод используется для образования Несомненно, что увеличение концентрации атмосферного Оказалось, что максимальные значения концентрации Имеется также небольшое число данных (в основном для глубинных слоёв океана) о значениях концентрации Донные осадки океана. Ежегодно около Области с бескислородными условиями увеличиваются вследствие загрязнения прибрежных вод, и в последние годы, вероятно, количество легко окисляемого органического вещества также увеличилось. Выше лизокнина океанические воды пересыщены по отношению к Содержание изотопа Процессы переноса в океанах. Вследствие буферных свойств карбонатной системы, изменение концентрации Поверхностные слои океана довольно хорошо перемешаны вплоть до верхней границы термоклина, т.е. до глубины около 75 м в области широт примерно 45 Возникающее в результате увеличение содержания суммарного растворённого неорганического углерода можно вычислить, принимая во внимание сопутствующий рост содержания питательных веществ и щёлочности. Однако, таким способом нельзя достаточно точно определить значения концентрации Справедливость этого предположения подтверждает тот факт, что первичная продуктивность в поверхностном слое океана обычно лимитируется наличием питательных веществ. Однако питательные вещества не являются лимитирующим фактором для продуктивности в основных зонах апвеллинга, расположенных в южной части Антарктического циркумполярного течения в широтном поясе 55-60 Соответственно может изменяться и глобальный углеродный цикл. Авторы статьи, использованной в качестве основы для написания данной работы, проанализировали некоторые из этих возможных факторов и показали, что при определённых условиях в поверхностных слоях океана могут наблюдаться более низкие значения концентраций растворённого неорганического углерода по сравнению с современными, соответственно концентрации атмосферного Однако несомненно, что в прошлом она менялась. Если потепление, вызванное ростом концентрации Изменение круговорота углерода могло бы произойти также при увеличении суммарного количества питательных веществ в океане. Если наличие питательных веществ в поверхностных слоях по-прежнему будет основным фактором, лимитирующим фотосинтез, их концентрации в этих слоях должны быть очень низкими. Следовательно, должен увеличится вертикальный градиент концентрации питательных веществ между обеднёнными этими веществами поверхностными водами и глубинными слоями. В этом случае за счёт вертикального перемешивания в океане в поверхностные слои будет переноситься больше питательных веществ, что приведёт к росту интенсивности фотосинтеза, и, следовательно, увеличению потока детрита в глубинные слои океана. Вертикальный градиент концентрации Брокер проанализировал возможные механизмы, которые могли бы играть существенную роль при переходе от ледниковья к межледниковью, особенно подчеркнув роль фосфатов. Действие этих механизмов могло бы объяснить довольно низкие концентрации углекислого газа в атмосфере, которые имели место в конце ледниковой эпохи, и высокие концентрации Показано, что сложные вторичные механизмы могут вносить свой вклад в возможные изменения концентрации атмосферного Углерод в континентальной биоте и в почвах. Углерод в биоте и первичная продуктивность. В течение последних 20 лет были предприняты многочисленные попытки определения запасов углерода в континентальной растительности и характеристик его годового круговорота: общей первичной продуктивности, дыхания и образования детрита. Оценка, характеризующая состояние континентальной биомассы на 1950 год без учёта сухостоя, равна Согласно этим двум исследованиям, содержание углерода в резервуаре живой континентальной фитомассы на 1970 год было равно Сейчас становится ясным, что содержание углерода во вторичных лесах значительно меньше, чем в девственных тропических лесах, а площадь, занимаемая первыми, больше, чем считалась ранее. Многие площади, которые ранее предполагались полностью занятыми сомкнутыми лесами, сейчас оказались занятыми частично сомкнутыми лесами. Среднее время пребывания углерода в лесных системах составляет 16-20 лет, но средний возраст деревьев по крайней мере в два раза больше, так как менее половины чистой первичной продукции превращается в целлюлозу. Среднее время жизни углерода в растениях, не входящих в лесные системы, равно примерно 3 годам. Углерод в почве. По разным оценкам, суммарное содержание углерода в составляет около Однако только небольшое количество (несколько процентов или даже меньше) детрита, поступающего ежегодно в резервуар почв, остаётся в них в течение длительного времени. Большая часть мёртвого органического вещества окисляется до Однако скорость разложения органического вещества при трансформации земель, занятых естественной растительностью, в сельскохозяйственные угодья совершенно другая. Например, высказывается мнение, что 50% органического углерода в почвах, используемых в сельском хозяйстве Северной Америки, могло быть потеряно вследствие окисления, так как эти почвы начали эксплуатироваться до начала прошлого века или в самом его начале. Изменения содержания углерода в континентальных экосистемах. За последние 200 лет произошли значительные изменения в континентальных экосистемах в результате возрастающего антропогенного воздействия. Когда земли, занятые лесами и травянистыми сообществами, превращаются в сельскохозяйственные угодья, органическое вещество, т.е. живое вещество растений и мёртвое органическое вещество почв, окисляется и поступает в атмосферу в форме Основываясь на данных этих исследований, можно прийти к выводу о том, что поступление Наиболее вероятно, что этот рост характерен для сельскохозяйственных культур, а в естественных континентальных экосистемах повышение эффективности использования воды могло бы привести к ускорению образования органического вещества. Прогнозы концентрации углекислого газа в атмосфере на будущее. Основные выводы. За последние десятилетия было создано большое количество моделей глобального углеродного цикла, рассматривать которые в данной работе не представляется целесообразным из-за того, что они в достаточной мере сложны и объёмны. Рассмотрим лишь кратко основные их выводы. Различные сценарии, использованные для прогноза содержания Величина ожидаемого изменения средней глобальной температуры при удвоении концентрации Проблема изменения климата в результате эмиссии парниковых газов должна рассматриваться как одна из самых важных современных проблем, связанных с долгосрочными воздействиями на окружающую среду, и рассматривать её нужно в совокупности с другими проблемами, вызванными антропогенными воздействиями на природу. Список литературы. 1. Парниковый эффект, изменение климата и экосистемы. / Под редакцией Б. Болина, Б. Р. Десса, Дж. Ягера, Р. Уоррика. / Ленинград, Гидрометеоиздат - 1989. 2. М. И. Будыко. |
оценка грузового авто в Туле
оценка товарного знака в Липецке